Distributed and Heterogeneous Event-based Monitoring in Smart Cyber-Physical Systems

László Balogh, István Dávid, István Ráth, Dániel Varró and **András Vörös**

Budapest University of Technology and Economics Fault Tolerant Systems Research Group

Overview

- Smart cyber-physical systems
 Motivation: the MoDeS3 case-study
- Complex-event processing with VIATRA-CEP

Ongoing work

MODEL-BASED DEMONSTRATOR FOR SMART AND SAFE SYSTEMS

Big Picture

- Traditional safety-critical systems:
 - Model-based development
 - Validation & verification
 - Code generation
 - Safety requirements

- Cyber-physical systems:
 - Various information sources (sensors)
 - Heterogeneous: Embedded
 computers & cloud
 computing

Combination of both worlds: Development techniques used for safety-critical systems with technologies from cyber-physical systems

ΜŰΕG

ЕТЕМ

MoDeS3

MoDeS3

6 embedded controllers: - Actuators

- Distributed:
 - o 6 controllers
 - Communication
- Safety: prevent accidents by stopping the trains

Component Level Runtime Verification

- Formal specification language: statechart
 - Hierarchical
 - o Timed
 - Parametric
- Runtime monitor generation
- Formal semantics

 Analysis

MoDeS3

Additional level of safety – high level monitoring

Group.safe(enabled, nng_safe);
nng_safe == true;

MoDeS3

Robot System

Goal: Moving/removing objects from the trains
 O Place onto other train/place onto the ground

Heterogeneous platform

Technologies

Summary

- Goal: case-study for smart CPS
- Combine various techniques from the domains of
 - Cyber-physical systems
 - Safety-critical systems

SYSTEM LEVEL MONITORING FRAMEWORK: VIATRA-CEP

VIATRA - CEP

Abstraction of the system

VIATRA - CEP **Abstraction** Events Processing of the system

y toute = 0.0 pomptiochuma internat = fame

EMF metamodel: - Elements and possible relations/connections

Events

VIATRA - CEP

Processing

Automaton "consumes" the events

Investigation of languages

- Parametric Timed Regular Expression
- Parametric Timed Event Automaton
 Based on Parametric Event Automaton
- Example:
 - Two trains should not enter the same section
 - enter(t₁,s)->NOT(exit(t₁,s)){*}->enter(t₂,s)

Investigation of languages

- Parametric Timed Regular Expression
- Parametric Timed Event Automaton
 Based on Parametric Event Automaton
 - Based on Parametric Event Automaton
- Questions:
 - Timed-automaton determinization
 - Needed to run the monitor on embedded devices

Future Goals

Automated deployment

Runtime specification (high level language)

Summary

CPS demonstrator: MoDeS3

- VIATRA CEP: ongoing developments
 - Development of the automaton formalism
 - Determinization
 - Automatic deployment/monitor synthesis

Acknowledgements

- Application in research:
 - Fault Tolerant Systems Research Group
 - MTA-BME Research Group on Cyber-Physical Systems
 - Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating Systems (R5-COP)
- Industrial sponsors:
 - IncQuery Labs Ltd.
 - Quanopt Ltd.
 - Ericsson

